Since the partition of U/ C is the key process for computing simplified discernibility matrix, a quick algorithm for computing U/ C is designed with the idea of radix sorting. Its time complexity is O (| C ‖ U|). 由于求简化差别矩阵的关键是求划分U/C,故利用基数排序的思想设计了一个快速求划分U/C的算法,其时间复杂度为O(C‖U)。
Correctness of a classic sorting algorithm of linear time complexity and realization of radix sorting were proved and the time complexity of it was analyzed from the viewpoint of the "big-O notation". Comparison of runtime between radix sorting and other classic sorting algorithms was performed. 采用大O表示法客观地分析了基数排序算法的时间复杂度,给出了基数排序算法的实现和正确性的证明,并与比较排序算法作了横向的运行时间的对比。
Then a new algorithm based on radix sorting for computing U/ C is designed, its time complexity is O(| C|| U|). 然后以基数排序的思想设计了一个新的求U/C的算法,其时间复杂度为O(|C||U|)。
This article puts forward a new sorting method-the Radix Subfield Exchange Sorting. 本文提出了一个新的分类算法&基数子域互换法。
The Best Radix Sorting 最佳基数排序
An Implementation Method of Most Significant Digital ( MSD) Radix Sorting 最高位优先基数排序的一种实现方法